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NOMENCLATURE

Fr A unit vector

f Any continuous function

h Enthalpy per unit mass of fluid

h0  Total enthalpy per unit mass of fluid

h.w Relative total specific rothalpy

H. Total enthalpy of a fluid; in linear systems, the total enthalpy of a fluid
per unit length of blade

L Lift per unit length of blade

m Mass flow rate

n A constant

p Local static pressure

Po Total pressure

q A generalized curvilinear coordinate

q A specific heat rate

r Radial coordinate of a cylindrical coordinate system

k Position vector for the point of interest in a fluid

s Entropy per unit mass of fluid

t Time

T Absolute temperature

U Velocity of the blade and a function of the radius

V Velocity

(VIS) The integrated viscous term of Equation 27

W Relative fluid velocity in a moving rotor frame

W' A time-dependent component of the velocity in the moving frame

Z Axial coordinate of a cylindrical coordinate system

(-Vi Krone .kcr's delta function
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r The circulation

1The dissipation

0 Tangential angle coordinate in cylindrical coordinates

v The kinematic viscosity

The stress tensor separated from the thermodynamic pressure

Q Local fluid density

A stream function

w Angular velocity
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ABSTRACT

A differential turbomachinery equation describing the energy transfer between t

fluid and any body moving in that fluid was derived. The derivation is based upon the
Coriolis form of the Navier-Stokes Equations. A differential equation for the total relative
rothalpy is also obtained. Both equalities contain a rigorous viscous correction. Both may
be evaluated in the absolute and moving frame.

On integration of the differential equations, aform of the Euler Turbomachinery
Equation with .;sco,. cor.-cction is derived. The resultant form contains two distinct work
rate terms for the axial and radial components of the flow. The fact that i'tegration yields
a result which approximates the classic Euler Turbomachinery Equation constitutes con-
firmation of the derivation.

An application of the eauation to an ideal infinite linear cylinder with bound vortic-
ity was developed, yielding the expected known result.
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INTRODUCTION

A monument of tubomachinery technology is the Turbomachinery Equation (i'lti-
mately due to Euler's analysis of torque in fluids) which is based upon thermodynamic
definitions of work and Newton's Laws. Since the Navier-Stokes Equations and Crocco's
Equation[I.2] in a rotating (moving) frame are also based upon thermodynamics and
Newton's Laws, they must in principle contain the Turbomachinery Equation in differen-
tial form and, on integration, in integral form.

The Coriolis' transformation relates moving rotor frames and absolute or laboratory
frames so that integration of the energy rate may be conveniently performed in a time-in-
dependent frame with a time-independent set of coordinates.

The transformation leads to simplified expressions for the substantial derivative of
the total enthalpy uncoupled from the substantial derivative of the entropic energy. The
uncoupling generates a differential Turbomachinery Equation which, on integration,
yields a novel form of the Turbomachinery Equation corrected for viscous non-ideal flow.
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The classical Turbomachinery Equation is an integrated expression arizing from
Euler's analysis of fluid torque and mechanical shaft work transferred between a fluid
and a rotor moving in that fluid. Since heat transfer is negligible in most turbomachines,
the shaft work has been equated to the specific total enthalpy transfer (see Horlock [31,
page 77, Equation 4.3) as follows:

Aho = A(UVu) (1)

where VU is the component of absolute velocity, V, in the direction U of the rotor (or
energy-transferring device). An inconsistency arises in the consideration of a propeller
windmilling on a frictionless shaft in a moving fluid. Since the shaft delivers no work a
viscous correction is necessary whether the right member of (1) represents work or a
change in the specific total enthalpy.

An application of the differutial turbomachinery equation is described for a two-
dimensional, ideal, linear turbine.

THE TRANSFORMATION BETWEEN ABSOLUTE AND MOVING FRAMES

In the following discussion the subscripts v and w represent the absolute and the
moving frame coordinate and vector values. (See Figure 1 and the Nomenclature for defi-
nitions of quantities.) A frequently used relation connecting the absolute and moving
frame velocities is

V= W+ U. (2)

Following Spannhake (41, spatial derivatives in the moving frame and time deriva-
tives have the following relationship:

r , rco at U at(3
(C (3)

Similar results are obtained with cartesian coordinates.

y, U at(4)

Equations (3) and (4) define, in fact, the crypto-steady criterion [5], which if U is con-
stant, indicates that a frame exists in which the flow regime may be truly steady state.

Since the vector operator V is independent of time and since vector operators are
independent of frame,

Vv = V1, = V. (5)

Now from Equation (3) for any static functionf,

f , ) qW, ] (6)

where q, represents all the position coordinates in the absolute frame and q, is the mov-
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The Transformation

tv= tW = t

z,=Zw+zo=Z.=z if zo =.O

rv= rw= r

V= Ow + (ot PO (t =o)

= R+ rw te0 r

V= W + U /o"' P(o)

a z

Fig. 1. Configurat~onal relationships between the absolute and moving coordinate systems.
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ing-frame coordinate in the direction of the lifting body. Equation (6) is an extension of

the usual crypto-steady relation.

To appreciate the significance of the final equation of this section, considei an ob-

server located on a blade of a rotating windmill in an infimite fluid which at infinity
translates with uniform constant velocity. The observer cannot detect any time-dependent

changes in the fluid at any given point on the blade. However, on moving to the absolute

frame, the observer notes changes in velocity, pressure and temperature as each blade

passes (See Dean [6]). Thus, the inequality

Ov )t"*( t- (7)

indicates that in the moving frame all partial time derivatives may vanish while the abso-
lute partial time derivative may be finite.

Note, however, in contrast with the inequality (7) that the substantial derivative of

any static quantity at a point is independent of the coordinate system or frame and is
therefore an invariant with respect to frame.

DERIVATION OF THE DIFFERENTIAL AND INTEGRAL FORMS

UNCOUPLING THE SUBSTANTIAL TOTAL ENTHALPY DERIVATIVE IN
THE MOVING AND ABSOLUTE FRAMES

Relationships between absolute and relative flow fields are given by the Coriolis
form of the Navier-Stokes Equlations [3,7-10j.

-V + VV 2/2-V x (V x V)
at

aW=- +VW 2/2-Wx (V X W +20 X W-VU2 /2at
_ -Vp ! =

Q O (8)

where ;r' represents the stress tensor excluding the pressure tensor, p6 / , and U is

independent of time. The relative acceleration, aW/at, is defined in the relative frame,
i.e., (aWlat),.

Using the absolute-frame equality of (8) and the gradient form of Gibb's equation of
state, the substantial derivative of the total enthalpy is obtained in terms of the partial

derivative of the pressure, the substantial derivative of the entropic energy, T(Ds/Dt),

and the stress tensor ;r. (Sce Wu et al. [7, 8].

Dho = I p +T Ds+V

at L , Dt Q (9)
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At this point non-ideal analysis stops unless the partial derivative of the pressure
with respect to time is resolved in terms of the pressure gradient [9). Employing Equation
(6) with the static pressure as the arbitrary function the result is

Dh, U Ds V-= - • Vp+T- - .(V r')
Dt Q Dt L9 (10)

Now Equation (8) may be used to replace the pressure gradient in (10). From the dot

product of U with the moving frame equality in (8) the pressure gradient term becomes

-U.-=U .W+U.(W.V)W+2U.Ux W
at

U. VU 2 /2- .(V i')

The gradient of the static pressure is of course invariant in all frames, but the mov-
ing frame is convenient and preferable in (11). Combining (10) with (11), the substantial
derivative of the total enthalpy coupled with Ae substantial derivative of the entropic en-
ergy is obtained in terms of the moving-frame flow field variables.

Dh°- TDs=U +U'(W.V)W+ 2U' × W+ IW 2

Dt Dt at W (12)

Wu (reference [8j, page 91) noted that in the moving frame following a particle of
fluid

Ds I=T__=q +l , .V) .W,
Dt Q (13)

where q represents heat transfer, and the second term is the specifik dissipation. If it is
assumed that heat sources and sinks, and thermal conduction are negligible, then from
(12) and (13)

Dh-- = , U aW+U.(W.V)W+ 2U.X W+-V.( '.W). (14)Dt at

Equation (14), the essential development of this paper, is a differential turbomachin-
ery equation expressed in terms of the velocity vector of the moving frame. It is
universally applicable in any moving frame whether rotating or not.

THE SUBSTANTIAL DERIVATIVE OF THE TOTAL ROTHALPY

Using the moving frame equality of Equation (8) and Gibb's Equation of state for
the pressure. a viscous moving-frame version of Crocco's Equation may be obtained.ow1

- +VW 2/2-Wx (2a +V x W)-VU 2/2=-Vh+TVs+-v.=' .
at (15)
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In (15) the subscript w on the relative acceleration term implies that spatial vari-

ables in the relative frame, r, e, and z are fixed.

Wu's total re ative rothalpy, ho,, may be defined as follows:

h,, M h + W 2/2 - U2/2 = ho - UVu = h + V2 /2 -U . (16)

Terms may be regrouped in (15) to obtain an expression explicit in Aho,.

Vhow, (a )+W X(20+ V X F+TVs .:' (17)
at )

Now the definition of the substantial derivative of the total relative rothalpy in the mov-

ing frame is as follows:

Dt t an + 2 +  
(18)

Taking the dot product of the relative velocity W on (17) and adding the dot Froduct to
(18) yields

Dh, _ah' W -

Dt a ) 'A' (V (19)

Using Gibb's Equation to eliminate the enthalpy yields an equation which is analo-

gous to (9) in the relative frame.

(Dh'- _= 1 (ap)"+ Ds W.
D, LO at +TDt ) W, . (20)

Since. as noted above, the substantial derivative of the static quantities are invariant
in all frames, using ('3) and assuming that heat transfer is negligible, (20) may be rewrit-
tun thus:

Dt C at -(21)-- )l., = -, \L ),. -

The quantity h,, in Equation (21) exhibits an explicit time dependence in ap/at

which was deliberately ignored in crypto-steady flow [91 but -ecently reconsidered [121.

Also, in (21) if the viscosity does not vanish, hw. also depends upon the last term [9]

which includes the viscous work and the viscous dissipation.

6 DTRC-PAS-91/29



CRYPTO-STEADY STATE CONDITIONS

We now examine the case where the observer is fixed to an infinite circular cylinder
with bound circulation translating uniformly in a infinite fluid. The observer fixed to the
moving cylinder cannot sense any time dependence. Of course time-dependent velocity
and pressure are immediately sensed when the observer moves to the absolute frame.

In another example the observer is fixed to a blade of an isolated rotating air screw
or a marine screw in an infinite uniform fluid. No time-dependence can be sensed in the
moving frame and a crypto-steady-state prevails.

Under crypto-steady-state conditions the partial derivative of the pressure with tLne
must vanish. This poses a great simplification which justifies common practice [1 ] in the
design of marine screws where time dependence is generally ignored.

Before departing from the crypto-steady-state, it is pertinent to ask what happens to
rotor energy transfer if there is steady-state in the absolute frame so that ap/atv vanishes.

Clearly, the viscous terms in (9), (10), and (14) do not vanish. In (14) only the viscous
term of the right member makes any contribution to bladeless, viscously coupled discs
and concentric cylinders.

Now, if viscosity vanishes and the time-dependent terms vanish because we impose
the crypto-steady condition, then (21) reduces to

W.Vh 0o.=0 (22)

The non-trivial solution is

Vhow = V(h + W2/2- U2/2)= V(h - U V U ) = 0 (23)

Equation (23) represents gradient forms of the classic Turbomachinery Equation in the
moving and absolute frame. Integration of the right member of (23) over a stream tube in
the absolute frame yields the classic Turbomachinery Equation (1). The argument demon-
strates that Equation (1) is strictly true only for isentropic and steady-state flow.

CHOOSING A FRAME FOR TIME DEPENDENCE

Since the analyses are based upon two frames of reference, the hypothesis now pro-
posed that time dependence may be associated with disturbances either in the bulk flow
or with flow local to the moving frame. Therefore, formulation of a mathematical de-
scription of the flow entering into the calculational domain may be most conveniently
described in bulk frame coordinates (the absolute frame, and subsequently transferred to
the moving frame). On the other hand flow disturbances arising near the moving body are
most conveniently described in terms of the moving frame coordinates. Since the discus-
sion centers on rotors, it is natural to consider subsequent time fluctuations in the moving
rotating frame.

A SINUSOIDAL VELOCITY IN THE MOVING-FRAME

Now in Equation (14) a small sinusoidal moving-frame oscillation is imposed on the

relative velocity W leading to a iiew velocity, W+ W' . The ratio of the magnitude of

time-independent W' to time-independent W will be arbitrarily fixed at < 0.05. The

DTRC-PAS-91/29 7



imposed frequency of the time-dependent W is at least an order of magnitude greater
than the blade velocity. If the oscillating frequency is too low, it will 'exhibit a period that
is long relative to the blade pericd and is ther-fore not considered. Thus, prior to
Reynolds time averaging (which should not employ too large an interval to avoid time
smoothing) the velocity and other thermodynamic quantities will fluctuate at a point (on
the blade, for example) during a blade period. With Reynolds averaging, the partial de-
rivative of W' with respect to time will vanish.

However, the Reynolds average over non-linear terms will lead to non-vanishing
Reynolds stress terms which will not be addressed here. As a result of the Reynolds time-
averaging process, Equation (14) may be written

-U.{W.V) W+2U. x {W+I .'.}(24)

where the braces represent the Reynolds time average and W and ;' include the time-

dependent W' . This notation will not be used again.

Now, note that arbitrary samples of turbulent flow over short (relative to the blade)
periods may be written as a Fourier summation of regular sinusoidal oscillations. For the
limited picture developed here, Equation (24) is again applicable by the argument above.

SOME CHARACTERISTICS OF THE NEW DIFFERENTIAL
TURBOMACHINERY EQUATION

Equation (14), an explicit statement of the substantial derivative of the total enthal-
py, represents the power transfer at any point in a flow field between the fluid and a body
moving at constant speed in that fluid.

With (13) it is now possible to uncouple the total-enthalpy, pressure relationship of
(10) from the entropic energy.

Dh _ U + '1
(25)

Dt Q 9 9

An inviscid Equation (25) indicates that neither axial nor radial pressure gradients
ae xcrmane to the calculation of specific total enthalpy transfer. (Mass flow rates are of
course a function of axial or radial pressure gradients.) Note, in contrast to reference [3],
p. 7), for the inviscid case, only transverse pressure gradients parallel to U contribute to
total enthalpy transfer. The impulse stages of turbomachines prove that axial or radial
pressure gradients need play no role in energy transfer.

For bladeless viscous coupling of discs or concentric cylinders, the gradient of the
pressure parallel to U vanishes. This is equivalent to steady-state pressure in the absolute
frame (see reference [6]).

A proper test of (14) would be whether, on integration over the rotor blade-to-blade
flow, it would predict a total enthalpy transfer compatible with that of the classic Turbo-
machinery Equation (1). Therefore, the integration of (14) for crypto-steady conditions
will be performed as a test in the three-dimensional domain. Then an application of the

DTRC-PAS-91/29



new equation will be developed in a two-dimensional linear turbine. Finally, the steady-
state viscous problem of two concentric cylinders will be examined.

INTEGRATION OF THE TOTAL ENTHALPY RATE

In the integration process it will be assumed that the flow may be divided into
streams which pass between a given pair of blades. In the rotating frame the streamtube
walls are fixed steady-state walls associated with a steady-state mass flow rate m which
may consist of radial and axial mass flow components.

DERIVATION OF THE INTEGRAL FORM FROM THE
DIFFERENTIAL FORM

The differential form of the turbomachinery equation (14) may be integrated to
yield

[[Dh " dr

jjQDt

The first term of the right member of (26) is the tangential component of the con-

vective term obtained on dot multiplication with U, i.e.:

Qu.- (W. V)W

Wr o r a az r " (27)

The first and last terms of (27) will be combined in an integral identified by I,4 thus:

11.4 =  r t.Hr o~ rdrdOdz .I I r r (28)

The factors in (28) may be rearranged to express the radial mass flow which must be
constant in steady flow. Following arguments presented previously [9]

11.4 = mr J d(UWo) = mr[(UWO)r 2 - (UWO)riI (29)

where

Wo(r) = AOAzJf 0. We dOdz . (30)

DTRC-PAS-91 /29 9



The third term of the right member of (27) may be written to show the axial mass
flow rate mP explicitly.

I3 =f(f f LW=rdrd") auwod , (31)
j~jjZ Jaz

where the axial velocity Wz, WO , and U have been averaged over r and 0 . Substitut-
ing the axial mass rate for the parenthesis in (31),

13 = mz f d(UWO) = mz[(UWo)z 2 - (UW)zl] (32)

The second term of the right member of (27) provides an integral which contains the
tangential kinetic energy.

((t2r a2

f J -"r [w2(02)- W12(O)9] rdz O (33)

Since the tangential velocities at the blade walls are equal to the blade velocity, the
integral vanishes.

Now identifying the second term of the right member of Equation (27) as 15, we
may write

15= f f f 2 2rWrdrdOdz. (34)

Finally, following the arguments above,

15 - m[(U2)r2 -(U2)ri] (35)

Summing the components of integration 11,4 through 15,f. f j d = mr[Ar(UWo) + Ar(U2)]

+ mzAz(UWo) + (VIS) (6)

where Ar and A, represent the change along r and z respectively, and (VIS) is the inte-

grated viscous term.

Now adding mzA, 0 2, which is zero, to Equation (37),

10 DTRC-PAS-91/29



+ mzAz 1(U + w0)U] + (VIS) (37)

In Equation (37) the terms We are averaged over 0 and z in the first term and over

r and 0 in the second term. If the total steady-state mass rate m between a pair of blades
is

m=mr+mz , (38)

then,

Aho = fAr(U0V) +fzAz(UVO) + (VIS)/m . (39)

Equation (39) represents classic Turbomachinery Equation with mixed flows and

the terms V6 and U are averaged over the blade space where necessary. The coeffi-
cients f, and f, represent the radial and axial fractions of the mass flow.

The viscous term is a novel feature of the derivation which explains losses in rotors
during windmilling. With the exception of the viscous energy term (VIS), the integral ex-
pression equation (39) exhibits a formal similarity and compatibility with the classic
Turbomachinery Equation. The differences arise because the integration in (39) has been
performed over the entire blade-to-blade volume rather than a stream tube. It is easy to
combine the axial and radial flow terms by letting A vary in both r and z .The deriva-
tion lends credence to the hypothesis that Equation (14) is indeed a differential
turbomachinery equation.

A two-dimensional application and test of the differential form (14) on an ideal lin-
ear device where the solution is known precisely will now be examined.

THE SUBSTANTIAL TOTAL ENTHALPY RATE IN A
TWO-DIMENSIONAL DEVICE

An infinite circular cylinder with bound circulation, as shown in Figure 2, is an ele-
mental linear turbine. It may be considered as an infinite sail on a sailboat or an infinite
wing on a sailplane. The device extracts energy from the ideal inviscid working fluid.
Work is performed on the sailplane (fixed to a vertical rail) by raising its height at uni-
form speed U against gravity. Work on the sailboat is performed by moving the boat at
uniform speed U which elevates a weight attached at minus infinity by an infinite tether.
In the moving frame the apparent velocity of the ideal working fluid at infinite distance is
W,. The relationship between the absolute and moving coordinate system and the velo-
cities is given by the transformation of Figure 1.

Since the flow field is ideal, the flow domain may be described by a potential func-
tion or its conjugate stream function. The lift is therefore the ideal lifting force, L, of the
Kutta-Joukowski Equation given by

DTRC-PAS-91/29



y y

(a) (b)

U U

U w1&

RAI L

(C)

Fig.- 2. The single-blade linear turbine: (a) sailplane version,
(b) sailboat version, and (c) the rotating cylinder blade.
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L - oWoF, (40)

where F is the scalar circulation. The units are force per unit length of cylinder. In the
absolute and moving frame the lift component Ly directed parallel to the y axis of Figure
2 is given by

LY = eWo0"I = eVor, (41)

where the subscript x represents the x component. Recalling that U is the velocity of mo-
tion of the device (sail or wing or rotating cylinder) as perceived in the absolute frame,
the power is the product of U and Ly.

Power/unit length = oUWo F . (42)

Since we assume that there is no heat rate,
DH.DH = UWox , (43)
Dt

where H4, is the total enthalpy of the system per unit length. Equation (43) is the antici-
pated relationship which should ultimately be developed from the differential form (14).

THE STREAM FUNCTION, VELOCITY AND RELATIVE ENTHALPY
IN THE FRAME OF THE BLADE

Since ideal flow has been assumed in the moving frame of the blade, the stream
function, ?/P, is the usual function modified for motion along the y axis.

= -Woy(1 - a2/r 2)r cos 0 + Wox(1 - a 2/r 2)r sin 0

+ (F/2ar)ln(r/a) . (44)

The constant a is the radius of the cylinder. The cartesian velocity components are
obtained by the usual transformation [9] as follows:

aw y2-X 2) 2a2WoYxy
(x2 + y2)2  (X2 + y2)2

F y

27r (X2 + y2)  (45)

2a 2Woxy a 2Woy(X2 - y2)wY = OY (X2 + y2)2 (XI + V2)2

F x

2r (x2 + y2 ) (46)

Now the relative vorticity must vanish because potential flow cannot have vorticity.
A check of the vorticity in the relative frame shows that indeed it vanishes. Also, the
time-dependent term ,anishes.

DTRC-PAS-91/29 13



THE SUBSTANTIAL TOTAL ENTHALPY DERIVATIVE

In the linear two-dimensional system, the differential form of the turbomachinery
Equation (14) is simplified because the rotation vanishes.

Dh = U (W V) (47)
Dt

Since the vorticity vanishes

W. VW = VW2/2, (48)

and

Dho U. VW2/2 = UW 2

Dt 2ay, (49)

The integrated substantial total enthalpy rate per unit length [where the subscript on y in
(49) has been droppedi is

DH, f U O (W'' + WI)d
t =f 2 ay (50)

Integration of (50) will be performed over all space per unit length z of the blade. The
choice of time is immaterial since the fluid dynamics are steady state in the moving frame
and the thermodynamic rates over all space are invariant with time. It is understood that
the integration applies only to the fluid domain and that boundaries at solid walls are ob-
served.

Now without going into details [9) the integral of the total derivative in (50) is

DH, =  U a ( 4 UW x(a2 - x2)1/2( 2x - a 2)

2worx(a2 - x 2 )"/2  8WoxUx(a 2 - X2)1/2
+ 4 + a2

Wo0 F(a2 - x2)1/ 2  4Wo0 Ux(a2 - x2)"/2(a2 _ 2x)
+ ;4 - a4

WoF(a' -x 2)'/2 (a' - 2x2 ) d.
= 4 ) (51)

Note that only odd terms in y make any contribution to (51). Since the first and fifth
terms cancel, only four terms remain. The integration with respect to x is performed
through a transformation employing

14 DTRC-PAS-91/29



x=acos0 , (52)

with integration limits given by

0= r when x=-a

0=0 when x=a . (53)

Making the substitutions
DHo O U 2Wo F 0 Cos 10Sin2 OdO

0# 0

-8WUa Jcos 0 sin2 OdO - W°F J sin2 OdO

- - XfJn 21 2  )dO)
X(54)

In (54) the second integral makes no contribution because -t is antisymmetric. The first
integral cancels the second term in the last integral to yield from the surviving terms

DHoH0 = - OFU= - OVOXFU . (55)

Dt

Equation (55) is identical with (43) and this result illustrates a useful application of
the differential form and constitutes confirmation of the validity of the differential turbo-
machinery Equation (14). For the linear case, the energy transfer rate of the rotor is
proportional to the component of the kinetic energy gradient parallel to the moving rotor.
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new equation will be developed in a two-dimensional linear turbine. Finally, the steady-

state viscous problem of two concentric cylinders will be examined.

INTEGRATION OF THE TOTAL ENTHALPY RArE

In the integration process it will be assumed th"t the flow may be divided into

streams which pass between a given pal ,of blades. In the rotating frame the streamtube

walls are fixed steady-state walls associated with a steady-state mass flow rate m which

may consisi of radial and axial mass flow components.

DERIVATION OF THE IN,GRAL FORM FROM THE
D1FERENTIALTORM

The differential form of the turbomachinery equation (14) may bc inte-=Z, 'z,

yieid i

+f f f ,f fJ1P [U- (W.V)W+ 2U1 U.X W) dd z

+JfJff V.-(;p .w) rdrd~dz . (26)

The first tm of the right member of (26) is the tangential component of the con-

vectve erm obtade on dot mudplkadon with U, ie.:

QU. (W. V)W

.,uw W, + we 1W8+ wo + .+wr) "
ar r W x (27)

The fist and last terms of (27) will be combined in an integral identified by 11,4 thus:
Q WWrcrW# rdrd~dz

f fr (28)

=f(II f dr

where we have used the mean value theorem to take W(r) outside the double integral.

Thus,

. We ddz . (29)

The fri in pwerdmes in the right member of (28) is the radial mass flow at any point
r.

DTRC-PAS 4129 9



f(r)--- f fQWrrdOdz = mf,(r) (30)

where f,(r) is the radial fraction of me maz; flow rate m. Then

11., =. M far) a 8 dr = m f,d(uWe). (31)

Now in the steady state he'na, jalue of f,(r), ,is a constant given by

=-f .rItl (aJe) ^<Ji. (32)
j

and,
I,4 ="?fIf(UWe) = r(UWA) ,- (UW )r,]. (33)

Using the same arguments as used for the radial mass flow, the third term of the
right member of (27) may be written to show the axial mass flow rate mn(z) explicitly.

(See argument above for m(r).) With the velocities W.. , We , and U averaged over r
and 6, one obtains

13 = riz[(UW),- (UW),1 . (34)

The second tm of te right member of (27) provides an integra, 1,, which con-
tains the tangential kinetic enery.12m f 'or ( --I4)d--

f I I -W.2e2) - :Wu 2iddz (35)
Since tangential velocities at the blade walls are equal to the blade velocity, theintegral vanisbe

Now identifying the second tern of the right member of Equation (27) as 15, we
may write

IS W J J 2QrWrdradd _ hr(U2), (U2)r,,]. (36)

Summing the components of integmtIon (33) trouSh (36)

4? J h. J dj±ru qfA(UWe) + 4,(U2)J

i AA(O*) + (VS). (37)

10 DTRC-PAS-O1/2



where A, and Az represent the chage along r and z respectively, and (VIS) is the inte-

grated viscous term.

Now adding ,thAtU2, which is zero, to Equation (37),

+PA. (U + We)U + (VIS) = mAh. (38)

In Equation (3) the terms We are averaged over 0 and z in the firs' term and over

rand 0 in the second'term. Finally,

±1J0 =jr(UVO) +fA(UVO) + (VIS)/m = A(UJV) + (VIS)/m . (39)

Equation (39) repsrents the rasic Turbomachinery Equation with mixed flows

and the terms V# and U we averaged over the blade space where necessary.

The viscous term is a aovel feature of the derivation which explains losses in rotors
during windmilling. With the exception of the viscous energy term (VIS), the integral ex-
pression equation (39) exhibits a formal similarity and compatibility with the classic
Trbomachlnery Equation. The differences arise because the integration in (39) has been
performed over the entire blade-to-blade volume rather than a stream tube. It is easy to
combine the atial and radial flow arms by letting A vary in both rand z .The deriva-
tion lends credence to the hypothesis that Equation (14) is indeed a differential
tinboMWainery eUpation.

A two-di m nomal application and test of the differential form (14) on an ideal lin-
ear device where the solution is known precisely will now be examined.

THE SUBSTANTIAL TOTAL ENTHALPY RATE IN A
TWO-DIMENSIONAL DEVICE

An Infinite circular cylier with bound circulation, as shown in Figure 2, is an ele-
mental linear trbiIt may be cons6ered as an infinite sail on a sailboat or an infinite
wing on a sailplan. The device extracts energy from the ideal nviscid working fluid.
Work is performed on the sailplane (fixed to a vertical rail) by raising its height at uni-,
form speed U against gravity. Work on the sailboat is performed by moving the boat at
uniform speed U which elevates a weight attached at minus infinity by an infinite tether.
In the moving fnme the apparent velocity of the ideal working fluiu at infinite distance is

Wo. The relationsip between the absolute and moving coordinate system and the velo-
cities is given by the transformation of Figure 1.

Since the flow field is ideal, the flow domain may be described by a potential func-
tion or its conjugate Stream function. The lift is therefore the ideal lifting force, L, of the
Kutta-Joukowdi Equation given by

TRC-PAS41/29
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